Karenaadanya hukum kekekalan momentum yang harus dipenuhi, maka pada umumnya nilai ambang energi ini lebih besar dari Q. CONTOH 15- 1 Energi Reaksi Inti Jika nitrogen ditembak dengan partikel alfa, maka dihasilkan sebuah inti oksigen dan sebuah proton sesuai dengan reaksi inti berikut. 4 14 14 1 2 7 7 1 He N O H Tentukan energi reaksi yang
Foton adalah partikel elementer dalam fenomena elektromagnetik. Biasanya foton dianggap sebagai pembawa radiasi elektromagnetik, seperti cahaya, gelombang radio, dan Sinar-X. Foton juga dapat diartikan sebagai energi terkuantisasi. Foton berbeda dengan partikel elementer lain seperti elektron dan quark, karena ia tidak bermassa dan dalam ruang vakum foton selalu bergerak dengan kecepatan cahaya, c. Foton memiliki baik sifat gelombang maupun partikel "dualisme gelombang-partikel". Foton yang dipancarkan dalam berkas koheren laser Sebagai gelombang, satu foton tunggal tersebar di seluruh ruang dan menunjukkan fenomena gelombang seperti pembiasan oleh lensa dan interferensi destruktif ketika gelombang terpantulkan saling memusnahkan satu sama lain. Sebagai partikel, foton hanya dapat berinteraksi dengan materi dengan memindahkan energi sejumlah , di mana adalah konstanta Planck, adalah laju cahaya, dan adalah panjang gelombangnya. Selain energi partikel foton juga membawa momentum dan memiliki polarisasi. Foton mematuhi hukum mekanika kuantum, yang berarti kerap kali besaran-besaran tersebut tidak dapat diukur dengan cermat. Biasanya besaran-besaran tersebut didefinisikan sebagai probabilitas mengukur polarisasi, posisi, atau momentum tertentu. Sebagai contoh, meskipun sebuah foton dapat mengeksitasi satu molekul tertentu, sering tidak mungkin meramalkan sebelumnya molekul yang mana yang akan tereksitasi. Deskripsi foton sebagai pembawa radiasi elektromagnetik biasa digunakan oleh para fisikawan. Namun dalam fisika teoretis sebuah foton dapat dianggap sebagai mediator buat segala jenis interaksi elektromagnetik, seperti medan magnet dan gaya tolak-menolak antara muatan sejenis. Konsep modern foton dikembangkan secara berangsur-angsur antara 1905-1917 oleh Albert Einstein[2][3][4][5] untuk menjelaskan pengamatan eksperimental yang tidak memenuhi model klasik untuk cahaya. Model foton khususnya memperhitungkan ketergantungan energi cahaya terhadap frekuensi, dan menjelaskan kemampuan materi dan radiasi elektromagnetik untuk berada dalam kesetimbangan termal. Fisikawan lain mencoba menjelaskan anomali pengamatan ini dengan model semiklasik, yang masih menggunakan persamaan Maxwell untuk mendeskripsikan cahaya. Namun dalam model ini objek material yang mengemisi dan menyerap cahaya dikuantisasi. Meskipun model-model semiklasik ini ikut menyumbang dalam pengembangan mekanika kuantum, percobaan-percobaan lebih lanjut membuktikan hipotesis Einstein bahwa cahaya itu sendirilah yang terkuantisasi. Kuantum cahaya adalah foton. Konsep foton telah membawa kemajuan berarti dalam fisika teoretis dan eksperimental, seperti laser, kondensasi Bose-Einstein, teori medan kuantum dan interpretasi probabilistik dari mekanika kuantum. Menurut model standar fisika partikel, foton bertanggung jawab dalam memproduksi semua medan listrik dan medan magnet dan foton sendiri merupakan hasil persyaratan bahwa hukum-hukum fisika memiliki kesetangkupan pada tiap titik pada ruang-waktu. Sifat-sifat intrinsik foton seperti muatan listrik, massa dan spin ditentukan dari kesetangkupan gauge ini. Konsep foton diterapkan dalam banyak area seperti fotokimia, mikroskopi resolusi tinggi dan pengukuran jarak molekuler. Baru-baru ini foton dipelajari sebagai unsur komputer kuantum dan untuk aplikasi canggih dalam komunikasi optik seperti kriptografi kuantum.
Massadan muatan suatu inti yang memancarkan sinar γ tidak berubah. Sinar γ ini memiliki energi yang sama dengan selisih antara tingkat-tingkat energi tersebut. Sebagai contoh tinjau Hamburan Compton terjadi apabila foton dengan energi hf berinteraksi dengan elektron bebas atau elektron yang tidak terikat dengan kuat oleh inti, yaitu
Supaya energi sama maka p momentumnya sama.E = hc λMomentum p = h λE = pC
Apabilasuatu jenis kanker diketahui menyebar ke area tertentu, kemungkinan akan dilakukan treatment untuk mencegah agar sel tersebut tidak berubah menjadi tumor. Terapi ini biasanya menggunakan modalitas berkas foton atau sinar-x energi tinggi yang dihasilkan oleh pemercepat partikel linier, sinar gamma yang dihasilkan oleh unit Co60 atau
Sponsors Link Foton diketahui sebagai senergi alami yang berasal dari alam. Energi foton merupakan energi yang kasat mata, berbeda dengan energi lain yang bisa ditangkap menggunakan pun merupakan sebuah partikel kecil dalam cabang ilmu fisika yang dapat membentuk dasar unit radiasi elektromagnetik. Radiasi tersebut biasanya berupa cahaya tampak, gelombang radio, sinar-x inframerah, ultraviolet, ataupun sinar gama. Foton tidak memiliki muatan listrik ataupun masa. Namun, foton memiliki pergerakan dengan kecepatan cahaya, maka ia tidak dapat ditangkap bisa kita lihat di kehidupan sehari-hari. Bayangkan kita memegang pedang cahaya yang dapat membelah cahaya menjadi tiga bagian. Bagian yang tengah kemudian kita belah lagi menjadi kecil. Bagian kecil-kecil tersebut kita belah lagi menjadi lebih kecil, dan dibelah lagi, dan seterusnya sampai semakin kecil. Semakin kita belah semakin kita temukan kumpulan energi. Energi tersebut adalah energi Mengenai FotonBerikut adalah beberapa fakta-fakta mengenai foton, yaitu1. Massanya nol2. Tidak bermuatan listrik3. Bersifat stabil4. Besarnya energi dan momentum yang dibawa foton tergantung frekuensinya5. Dapat berinteraksi dengan partikel lain seperti elektron6. Foton dapat hancur ataupun terciptakan melalui berbagai proses alami7. Ketika berada di ruang hampa udara seperti angkasa, foton bergerak dengan kecepatan cahaya yaitu sekitar km per detik8. Ketika berada dalam air, foton hanya mampu bergerak dengan kecepatan tiga perempat dari kecepatan cahaya. Kecepatan foton paling pelan yang pernah terdokumentasi adalah 17 meter per detik, dan ini terjadi saat pembuatan materi Bose-Einstein Foton dapat bergerak melebihi kecepatan cahaya seperti pada reaktor nuklir. Dalam sebuah reaktor nuklir, sejumlah partikel ditembakkan dengan kecepatan yang sangat tinggi sehingga akan menghasilkan cahaya biru yang melewati kecepatan cahaya. Cahaya biru ini biasa dikenal sebagai radiasi Foton dapat mengubah apa yang terjadi pada foton lain. Fenomena ini dibuktikan dalam sebuah penelitian oleh John Wheeler yang dilakukan pada tahun 1978 dalam sebuah eksperimen dua Memiliki sifat dualisme. Kita dapat mengenal foton sebagai sebuah partikel dan juga sebuah gelombang. Foton dapat dianggap sebagai gelombang karena foton memiliki sifat yang dapat dibiaskan atau dibelokkan, contohnya adalah fenomena bengkoknya pensil yang dimasukkan ke dalam gelas berisi air. Fenomena ini merupakan salah satu sifat cahaya. Selain itu, foton juga dapat dipantulkan dengan besar sudut pantul yang sama dengan sudut datang jika bertabrakan dengan sebuah permukaan beneda. Fenomena tersebut menyebabkan kita dapat melihat suatu Dapat bertindak sebagai partikel. Dengan adanya sifat ini, foton dapat berinteraksi dengan partikel lain. Contohnya adalah fenomena panasnya permukaan aspal, dimana hal tersebut terjadi karena adanya sebagian energi dari cahaya materi yang diserap oleh aspal, sehingga permukaan aspal menjadi panas. Energi yang diserap dari cahaya oleh partikel aspal hanya terjadi apaila foton adalah sebuah partikel. Hal tersebut tidak akan mungkin terjadi jika foton berdiri sebagai Dengan FotonKita berinteraksi dengan foton dalam hidup sehari-hari kita. Contohnya yang paling mudah adalah saat foton menabrak retina mata. Ketika fenomena tersebut terjadi, energi elektromagnetik foton akan berubah menjadi energi listrik yang kemudian akan ditransmisikan ke otak kita melalui sistem syaraf mata. Konversi energi elektromagnetik foton menjadi energi listrik dikenal sebagai fotoelektrik, dan biasanya fotoelektrik dapat ditemukan dalam panel surya yang memiliki fungsi untuk mengubah energi sinar matahari menjadi energi Energi Foton Dengan Momentum FotonMomentum foton biasa ditemukan dalam efek Compton, yaitu peristiwa terhamburnya sinar X foton ketika menumbuk elektron diam menjadi foton terhambur dan elektron. Rumus dari momentum foton adalah sebagai berikut p=h/λh adalah konstan Planck yang berasal dari teori radiasi Planck, sementara λ adalah panjang gelombang foton tersebut. Momentum foton sangat kecil karena h juga sangat kecil. Hal ini karena kita tidak biasa mengobservasi momentum Energi FotonRumus dari energi foton adalah sebagai berikutE adalah energi foton, h adalah konstanta Planck, c adalah kecepatan cahaya dalam ruang hampa, dan λ adalah penjang gelombang foton. Kedua h dan c adalah konstan, sehingga energi foton E berubah dalam hubungan terbalik dengan panjang gelombang Aplikasi Energi FotonBerikut adalah beberapa contoh aplikasi energi foton dan penggunaan Sebuah radio FM yang mentrasmisikan stasiun pada 100 MHz memancarkan foton dengan energi sekitar 4,1357 × 10 −7 eV. Jumlah energi tersebut adalah sekitar 8 × 10 −13 dikali dengan massa Sinar gama energi yang sangat tinggi memiliki energi foton 100 GeV hingga 100 TeV atau 16 nanojoules hingga 16 microjoule. Hal tersebut sesuai dengan frekuensi 2,42 × 10 25 hingga 2,42 × 10 28 Selama fotosintesis, molekul klorofil spesifik menyerap foton lampu merah pada panjang gelombang 700 nm. Untuk sintesis satu molekula glukosa tunggal dari CO2 dan air, diperluka setidaknya 48 foton dengan efisiensi konversi energi maksimal 35%.Demikian mengenai energi foton, perbedannya dengan momentum foton, dan aplikasi energi foton dalam hidup sehari-hari. Walaupun kita tidak dapat melihatnya secara langsung, sudah pasti energi foton ada di sekitar kita. Sponsors Link
Plasmaadalah gas yang terionisasi, artinya gas tersebut sudah kehilangan elektron2nya. Kita tahu bahwa sebuah unsur terdiri atas elektron dan nukleus (yang terdiri atas proton dan neutron). Plasma memiliki sifat sebagai berikut : Tidak lagi bersatu membentuk molekul, dan unsur2 tersebut kehilangan elektron2nya.
A. Efek Fotolistrik Efek fotolistrik adalah peristiwa terlepasnya elektron dari permukaan logam karena logam tersebut disinari cahaya dengan frekuensi tertentu. Elektron yang terlepas dari permukaan logam tersebut disebut dengan elektron foto photoelectrons. Gambar dibawah ini menggambarkan skema alat yang digunakan untuk mengadakan percobaan Efek fotolistrik Alat tersebut terdiri atas tabung hampa udara yang dilengkapi dengan dua elektroda A dan B dan dihubungkan dengan sumber tegangan arus searah DC. Pada saat alat tersebut dibawa ke dalam ruang gelap, maka amperemeter tidak menunjukkan adanya arus listrik. Akan tetapi pada saat permukaan Katoda A dijatuhkan sinar amperemeter menunjukkan adanya arus listrik. Hal ini menunjukkan adanya aliran arus listrik. Aliran arus ini terjadi karena adanya elektron yang terlepas dari permukaan A bergerak menuju B. Apabila tegangan baterai diperkecil sedikit demi sedikit, ternyata arus listrik juga semakin mengecil dan jika tegangan terus diperkecil sampai nilainya negatif, ternyata pada saat tegangan mencapai nilai tertentu -Vo, amperemeter menunjuk angka nol yang berarti tidak ada arus listrik yang mengalir atau tidak ada elektron yang keluar dari keping A. Potensial Vo ini disebut potensial henti, yang nilainya tidak tergantung pada intensitas cahaya yang dijatuhkan. Hal ini menunjukkan bahwa energi kinetik maksimum elektron yang keluar dari permukaan adalah sebesar dengan Ek = energi kinetik elektron foto J atau eV m = massa elektron kg v = kecepatan elektron m/s e = muatan elektron C Vo = potensial henti volt Berdasarkan hasil percobaan tersebut ternyata tidak semua cahaya foton yang dijatuhkan pada keping akan menimbulkan efek fotolistrik. Efek fotolistrik akan timbul jika frekuensinya lebih besar dari frekuensi tertentu. Demikian juga frekuensi minimal yang mampu menimbulkan efek fotolistrik tergantung pada jenis logam yang dipakai. Teori gelombang belum dapat menjelaskan tentang sifat-sifat penting yang terjadi pada efek fotolistrik,yaitu a. Menurut teori gelombang, energi kinetik elektron foto harus bertambah besar jika intensitas foton diperbesar. Akan tetapi kenyataan menunjukkan bahwa energi kinetik elektron foto tidak tergantung pada intensitas foton yang dijatuhkan. b. Menurut teori gelombang, efek fotolistrik dapat terjadi pada sembarang frekuensi, asal intensitasnya memenuhi. Akan tetapi kenyataannya efek fotolistrik baru akan terjadi jika frekuensi melebihi harga tertentu dan untuk logam tertentu dibutuhkan frekuensi minimal yang tertentu agar dapat timbul elektron foto. c. Menurut teori gelombang diperlukan waktu yang cukup untuk melepaskan elektron dari permukaan logam. Akan tetapi kenyataannya elektron terlepas dari permukaan logam dalam waktu singkat spontan dalam waktu kurang 10-9 sekon setelah waktu penyinaran. d. Teori gelombang tidak dapat menjelaskan mengapa energi kinetik maksimum elektron foto bertambah jika frekuensi foton yang dijatuhkan diperbesar. Teori kuantum mampu menjelaskan peristiwa ini karena menurut teori kuantum bahwa foton memiliki energi yang sama, yaitu sebesar hf, sehingga menaikkan intensitas foton berarti hanya menambah banyaknya foton, tidak menambah energi foton selama frekuensi foton tetap. Menurut Einstein energi yang dibawa foton adalah dalam bentuk paket, sehingga energi ini jika diberikan pada elektron akan diberikan seluruhnya, sehingga foton tersebut lenyap. Oleh karena elektron terikat pada energi ikat tertentu, maka diperlukan energi minimal sebesar energi ikat elektron tersebut. Besarnya energi minimal yang diperlukan untuk melepaskan elektron dari energi ikatnya disebut fungsi kerja Wo atau energi ambang. Besarnya Wo tergantung pada jenis logam yang digunakan. Apabila energi foton yang diberikan pada elektron lebih besar dari fungsi kerjanya, maka kelebihan energi tersebut akan berubah menjadi energi kinetik elektron. Akan tetapi jika energi foton lebih kecil dari energi ambangnya hf f’, sedangkan panjang gelombang yang terhambur menjadi tambah besar yaitu l > l ’. Dengan menggunakan hukum kekekalan momentum dan kekekalan energi Compton berhasil menunjukkan bahwa perubahan panjang gelombang foton terhambur dengan panjang gelombang semula, yang memenuhi persamaan dengan l = panjang gelombang sinar X sebelum tumbukan m l ’= panjang gelombang sinar X setelah tumbukan m h = konstanta Planck 6,625 × 10-34 Js mO = massa diam elektron 9,1 × 10-31 kg c = kecepatan cahaya 3 × 108 ms-1 q = sudut hamburan sinar X terhadap arah semula Besaran sering disebut dengan panjang gelombang Compton. Jadi dengan hasil pengamatan Compton tentang hamburan foton dari sinar X menunjukkan bahwa foton dapat dipandang sebagai partikel, sehingga memperkuat teori kuantum yang mengatakan bahwa cahaya mempunyai dua sifat, yaitu cahaya dapat sebagai gelombang dan cahaya dapat bersifat sebagai partikel yang sering disebut sebagai dualisme gelombang cahaya. Soal latihan Soal Fisika Kelas 12 Tentang Dualisme Gelombang Partikel
Berikutadalah beberapa fakta-fakta mengenai foton, yaitu: 1. Massanya nol 2. Tidak bermuatan listrik 3. Bersifat stabil 4. Besarnya energi dan momentum yang dibawa foton tergantung frekuensinya 5. Dapat berinteraksi dengan partikel lain seperti elektron 6. Foton dapat hancur ataupun terciptakan melalui berbagai proses alami 7.
Foton adalah partikel tak bermassa yang tidak menunjukkan massa tetapi membawa energi sedangkan elektron adalah partikel bermuatan negatif yang memiliki massa. Mari kita bahas apakah foton merupakan foton dihasilkan saat elektron memancarkan energi saat berpindah dari tingkat energi yang lebih tinggi ke tingkat energi yang lebih rendah yang memberikan energi dalam bentuk foton, foton bukanlah elektron tetapi dapat memberikan energi ke foton menjadi elektron?Sebuah foton pasti tidak dapat menjadi elektron tetapi dapat memberikan energi kepada elektron untuk melompat dari tingkat energi yang lebih rendah ke tingkat energi yang lebih energi foton lebih besar dari energi ionisasi atom maka foton yang datang dapat memutuskan gaya tarik menarik antara elektron dan inti atom dengan melepaskan elektron secara elektron dari atom menghasilkan ion dan karenanya disebut proses ionisasi. Foton hanya memberikan energi pada elektron yang terlepas ini tetapi tidak benar bahwa foton diubah menjadi elektron terbuat dari foton?Dikatakan bahwa foton frekuensi tinggi muncul ke dalam pembentukan elektron dan plasma quark dan gluon selama Big yang menghasilkan medan elektromagnetik memancarkan foton memberikan energi yang diperoleh oleh medan. Foton dibuat oleh energi elektron. Saat elektron menerima energi, mereka menunjukkan transisi elektronik yang memancarkan energi di alam semesta terlihat karena foton bergerak dalam gelombang elektromagnetik yang membawa paket energi. Hal ini disebabkan oleh reaksi fisi dan fusi yang terlihat oleh foton lebih kecil dari elektron?Massa diam sebuah foton adalah nol tetapi bergerak dengan kecepatan sama dengan kecepatan cahaya sedangkan massa diam elektron adalah 10-31kFoton adalah partikel tak bermassa yang bergerak dengan kecepatan tinggi dan sebaliknya, kecepatan elektron lebih rendah dibandingkan dengan foton yang merambat dengan energi gelombang de Broglie dari foton adalahPanjang gelombang D'Broglie dari elektron jika kecepatannya kira-kira makaPanjang gelombang elektron berbeda berdasarkan konfigurasi atom dan energi yang diperoleh elektron. Semakin besar ukuran atom, semakin kecil panjang bahwa panjang gelombang elektron lebih kecil dari foton. Hal ini disebabkan oleh fakta bahwa elektron lebih besar dari foton dipancarkan dari elektron?Elektron juga bereaksi dengan partikel quark untuk menghasilkan proton dan neutronSebuah foton dilepaskan oleh elektron saat ia melompat dari tingkat energi yang lebih tinggi ke tingkat energi yang lebih rendah, memberikan energinya ke foton yang gelombang foton yang dipancarkan dihitung menggunakan rumusdi mana R adalah konstanta Rydberg, Z adalah nomor atom. dan N1 dan N2 adalah bilangan orbital tempat terjadinya elektron bebas memancarkan foton?Sebuah elektron bebas dapat memancarkan foton jika elektron menyerap energi dalam beberapa ini dapat berikatan dengan partikel lain karena bergerak acak bebas dan dapat memancarkan foton. Setelah bereaksi dengan beberapa partikel berenergi lainnya, ia menerima energi ekstra yang dipancarkan dalam bentuk foton benar-benar terikat dengan elektron bebas maka kecepatan elektron dapat menjadi sama dengan kecepatan Foton dan ElektronSebuah foton memiliki 'p' dan 'E' dan jika bereaksi dengan elektron kita mendapatkan efek hamburan Compton. Ketika foton dengan panjang gelombang datang pada elektron, sebagian energinya diberikan kepada elektron dan dihamburkan kembali dengan energi rendah sehingga meningkatkan panjang gelombangnya..Hamburan ComptonIni adalah jenis hamburan tidak elastis karena panjang gelombang datangnya cahaya berbeda dari cahaya yang dihamburkan dan juga energinya berkurang. Perubahan panjang gelombang ini diberikan oleh persamaandi mana adalah sudut yang dibuat oleh partikel yang interaksi elektron foton juga dapat dilihat pada efek fotolistrik. Efek ini terjadi ketika foton berenergi tinggi dibuat mengenai gugus elektron memperoleh energi lebih besar dari ikatannya energi maka ia akan melepaskannya dari kulit bagian dalam atom. Ini sekarang disebut fotoelektrik; Kredit Gambar WikipediaEnergi kinetik yang diperoleh fotoelektron yang dipancarkan sama dengan energi foton dikurangi energi ikat elektron yang dipancarkan. Emisi elektron dari kulit bagian dalam atom menciptakan ruang kosong di kulit yang diisi oleh elektron di kulit elektron dari orbit energi yang lebih tinggi ke energi yang lebih rendah menyiratkan bahwa energi elektron harus dikurangi dan energi ini dipancarkan memberikan foton yang menghasilkan Foton dan ElektronFoton adalah kuanta energi tak bermassa, massa diamnya nol sedangkan elektron bermassa. Foton bergerak dengan kecepatan cahaya sementara elektron tidak mungkin bergerak dengan kecepatan tidak bermuatan sedangkan elektron yang kita kenal bermuatan negatif. Foton menunjukkan lebih banyak karakter gelombang sedangkan elektron menunjukkan lebih banyak sifat adalah paket energi dan memperoleh massa yang sama dengan E/c2 karena bergerak dengan kecepatan cahaya dan memiliki energi dan momentum. Energi foton diubah menjadi massa saat merambat dengan kecepatan cahaya, oleh karena itu ditemukan bahwa foton juga menunjukkan perilaku Gelombang Foton dan ElektronKecepatan partikel berbanding lurus dengan panjang gelombang dengan persamaan, v = fλ sesuai panjang gelombang foton harus lebih dari foton dan elektron keduanya memiliki energi 1ev maka berapakah perbedaan panjang gelombang keduanya, mari kita hitung dan pahami bergerak dengan kecepatan cahaya maka energi foton dapat diukur menggunakan persamaan,E=pc karena energi foton hanya disebabkan oleh istilah kita dapat menulis,Dimana h adalah konstanta Planck, c adalah kecepatan, danp adalah panjang gelombang karena itu, berdasarkan ini kita dapat mengukur panjang gelombang foton sebagaiSekarang mari kita cari panjang gelombang elektron dengan energi elektron adalahKarena panjang gelombang elektron dapat ditemukan menggunakan rumusOleh karena itu dapat disimpulkan bahwa panjang gelombang foton lebih besar daripada panjang gelombang dan Massa ElektronFoton meskipun memiliki momentum itu adalah kuanta energi tak bermassa. Sesuai teori relativistik, energi yang dimiliki foton adalah E = pc karena momentum dan ketika bergerak, massa foton setara dengan E/c2Massa elektron berubah ketika bergerak menggunakan energi kinetik. Massa relativistik elektron yang bergerak adalahdimanaMassa elektron dihitung menggunakan konstanta Rydbergdi mana adalah konstanta struktur halus yang diukur dari spektroskopiJadi kita mendapatkan massa diam elektron menggunakan persamaan iniditemukan Foton dan ElektronEnergi dari setiap partikel secara langsung berhubungan dengan frekuensi kemunculannya dan diberikan olehE=hγDimana h adalah konstanta Planck dan adalah frekuensi.=v/λKarena, kecepatan foton sama dengan c, makaE=h/cλTergantung pada panjang gelombang cahaya, kita dapat menentukan energi yang terkait dengan foton yang memancarkan elektron bervariasi tergantung pada energi yang ditangkap oleh elektron untuk melakukan transisi ke tingkat energi yang lebih tinggi atau energi total diberikan untuk menempati keadaan energi yang lebih rendah daripada yang partikel adalah kekal dan energi elektron dapat dihitung dengan menggunakan rumus E=p2/2m. Saat elektron melompat dari satu tingkat ke tingkat lainnya, energi yang hilang atau diperoleh dapat dihitung dengan mengetahui variasi frekuensi elektron E=hγΔBerapa perbandingan panjang gelombang elektron dan foton?Panjang gelombang elektron adalah e=h/√2m/E sedangkan perbandingan foton adalah h/√2m/ERasio panjang gelombang elektron dan foton sama dengan akar kuadrat energi total dengan dua kali massa elektron kali kebalikan dari kecepatan panjang gelombang elektron yang memiliki energi E= punya,Panjang gelombang elektron adalah adalah paket energi yang bergerak dalam gelombang elektromagnetik sedangkan elektron menunjukkan dualitas di alam dan memiliki massa. Transisi elektron dari tingkat energi yang lebih tinggi ke tingkat energi yang lebih rendah memberikan foton yang membawa energi ekstra yang dipancarkan oleh elektron.
. 305 457 34 395 190 89 403 422
sebuah partikel dan foton memiliki energi yang sama apabila