yangmeliputi proyeksi skalar dan proyeksi vektor ortogonal , carilah panjang proyeksi vektor a 4i 3j 2k pada garis yang membentuk sudut sudut sama dengan sumbu sumbu koordinat , dari beberapa soal yang pernah keluar dalam ujian nasional matematika model soal vektor yang paling sering muncul adalah menentukan proyeksi vektor orthogonal
ο»ΏHai Quipperian, pernahkah kamu bermain tarik tambang? Permainan tarik tambang akan dimenangkan oleh tim yang memiliki kekuatan atau gaya total lebih besar. Jika gaya tarik ke kanan lebih besar daripada tarikan ke kiri, sudah pasti tim kanan akan memenangkannya. Peristiwa tarik tambang itu merupakan salah satu contoh penerapan vektor dalam kehidupan sehari-hari. Saat membahas vektor, ada beberapa rumus yang harus kamu pelajari. Lalu, apa saja rumus vektor itu? Daripada penasaran, yuk simak selengkapnya! Pengertian Vektor Vektor adalah besaran yang memiliki nilai dan arah. Operasi vektor tentu berbeda dengan operasi skalar. Pada operasi skalar, kamu bisa mengoperasikan langsung suatu bilangan, misalnya 2 + 3 = 5. Namun, tidak demikian dengan vektor. Operasi vektor harus mengacu pada arah besarannya. Jika ke kanan bertanda positif, maka ke kiri harus bertanda negatif. Prinsip dasar inilah yang digunakan pada peristiwa tarik tambang. Ruang Lingkup Vektor Berikut ini merupakan ruang lingkup vektor. Vektor Negatif Vektor negatif -P adalah vektor yang memiliki nilai sama dengan vektor P, tapi arahnya berlawanan. Vektor Nol Vektor nol adalah vektor yang tidak memiliki panjang dengan arah sembarang. Di dalam penulisannya, vektor nol biasa dinyatakan sebagai matriks nol seperti berikut. Vektor Posisi Vektor posisi adalah vektor yang ujungnya berada di suatu titik koordinat tertentu dengan pangkal berada di titik koordinat 0, 0. Vektor posisi biasanya memuat vektor satuan i dan j. Perhatikan contoh berikut. Jika ditarik dari titik pusat ke titik P, maka vektor posisinya disebut OP. Panjang vektor OP bisa dicari dengan teorema Phytagoras, seperti berikut. Lalu, bagaimana jika titik pangkalnya tidak berada di titik 0, 0? Perhatikan gambar berikut. Cara menentukan panjang vektor PQ, gunakan rumus vektor berikut. Panjang atau Nilai Vektor Panjang atau nilai vektor adalah nilai vektor tanpa arahnya. Panjang vektor selalu bernilai positif. Untuk itulah, penulisan panjang berada di dalam tanda mutlak …. Rumus panjang vektor sama dengan rumus Phytagoras, yaitu sebagai berikut. β†’ jika pangkalnya berada di titik O 0, 0. β†’ jika pangkalnya berada di titik P x1, y1. Vektor Satuan Vektor satuan adalah vektor yang memiliki nilai 1 satuan. Cara menentukan vektor satuan adalah membagi vektor tersebut dengan panjang vektornya. Perhatikan rumus vektor berikut. Vektor pada Bangun Dua Dimensi Vektor pada bangun dua dimensi memiliki dua komponen, yaitu komponen vektor searah sumbu-x dan komponen vektor searah sumbu-y. Penulisan dimensi dua vektor adalah sebagai berikut. Operasi Vektor Jenis-jenis operasi vektor sama seperti operasi bilangan pada umumnya. Perbedaannya terletak pada cara mengoperasikannya karena melibatkan arah. Adapun bentuk-bentuk operasi vektor adalah sebagai berikut. Penjumlahan Vektor Penjumlahan dua buah vektor mengacu pada dua aturan, yaitu aturan segitiga dan jajargenjang seperti berikut. Penjumlahan vektor dengan aturan segitiga Menurut aturan segitiga, penjumlahan dua buah vektor dilakukan dengan meletakkan pangkal salah satu vektor pada ujung vektor lainnya. Hasil penjumlahannya merupakan jarak antara pangkal salah satu vektor dan ujung vektor lainnya. Perhatikan contoh berikut. Penjumlahan vektor dengan aturan jajargenjang Menurut aturan jajargenjang dua buah vektor bisa dijumlahkan dengan meletakkan ujung pangkal kedua vektor pada titik yang sama seperti berikut. Untuk P=x1, y1 dan Q=x2, y2, rumus penjumlahan dua vektornya bisa dinyatakan sebagai berikut. Selisih Vektor Selisih vektor adalah operasi yang digunakan pada dua vektor yang memiliki arah atau tanda yang saling berlawanan. Rumus vektor selisih dinyatakan sebagai berikut. Perhatikan contoh ilustrasi berikut. Dari ilustrasi di atas, coba kamu perhatikan arah vektor Q. Semula arah vektor Q ke kanan. Oleh karena berlawanan, maka arah arah vektor -Q ke kiri. Perkalian Vektor Rumus perkalian vektor itu bermacam-macam, tergantung dari jenis perkaliannya. Adapun jenis-jenis perkalian vektor itu adalah sebagai berikut. Perkalian vektor dengan skalar Perkalian vektor dengan skalar artinya, skalar menjadi pengali dari vektor yang dimaksud. Misalnya, vektor P dikali skalar m, maka vektor hasil kalinya memiliki panjang m kali panjang vektor P. Untuk arahnya, bergantung sepenuhnya pada m. Jika m > 0, hasil kalinya searah dengan vektor P, jika m = 0 akan dihasilkan vektor nol, jika m < 0, hasil kalinya berlawanan dengan arah vektor P. Rumus perkalian vektor dengan skalar adalah sebagai berikut. Perhatikan contoh berikut. Diketahui . Tentukan nilai dari 2 βˆ™ P! Pembahasan Jadi, nilai 2 βˆ™ P = 4 -10 . Perkalian vektor dengan sudut tidak diketahui Pada prinsipnya, rumus perkalian titik antara dua buah vektor memiliki cara yang sama seperti perkalian pada umumnya. Rumus perkalian antara vektor P=x1, y1 dan vektor Q=x2, y2 adalah sebagai berikut. Perkalian vektor dengan sudut diketahui Jika posisi dua buah vektor membentuk sudut tertentu, maka rumus perkaliannya adalah sebagai berikut. Dengan Ξ± = sudut yang dibentuk oleh vektor P dan Q Untuk mencari nilai cos Ξ±, gunakan rumus berikut. Resultan Vektor Resultan vektor adalah panjang dari suatu vektor. Perhatikan gambar berikut. Untuk mencari resultan vektor atau panjang OR, gunakan rumus berikut. Sementara itu, arah vektor resultannya bisa ditentukan dengan rumus berikut. Contoh Soal Vektor Setelah kamu tahu apa saja rumus-rumus vektor itu, yuk asah kemampuanmu dengan contoh soal berikut. Contoh Soal 1 Dua buah vektor berada pada posisi seperti berikut. Tentukan hasil kali antara A dan B! Pembahasan Oleh karena kedua vektor membentuk sudut, kamu bisa menentukan hasil kalinya dengan rumus berikut. Mula-mula, tentukan dahulu A dan B. Lalu, substitusikan pada persamaan tersebut. Jadi, hasil kali antara A dan B adalah 9,87. Contoh Soal 2 Diketahui dua vektor berikut. Berapakah nilai cosinus sudut yang dibentuk oleh kedua vektor? Pembahasan Langkah pertama, kamu harus menentukan panjang vektor p dan q. Selanjutnya, gunakan persamaan berikut. Jadi, nilai cosinus yang dibentuk oleh kedua vektor adalah 865. Contoh Soal 3 Sebuah batu besar berada di tengah lapangan. Untuk memindahkan batu tersebut, dibutuhkan 2 truk penarik dengan posisi seperti berikut. Berapakah resultan gaya yang dihasilkan oleh kedua truk penarik? Pembahasan Diketahui FA = 120 N FB = 150 N Ξ± = 30o Ditanya FR =…? Jawab Untuk menentukan resultan gaya kedua truk, gunakan persamaan berikut. Jadi, resultan gaya tarik kedua truk adalah 234,30 N. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
Pembahasan Jika suatu besaran vektor ditulis -X, artinya arahnya berlawanan dengan vektor X. Tetapi, besarnya sama alias nggak berubah, yaitu sama dengan vektor X. Contoh Soal 2. Perhatikan diagram kartesius berikut ini! Tentukan vektor di atas! Jawab: .
- Dilansir dari Encyclopedia Britannica, vektor merupakan besaran fisika yang memiliki besar dan arah. Resultan dari suatu vektor merupakan penjumlahan dari dua atau lebih vektor. Mari simak contoh soal dalam menentukan resultan vektor pada pembahasan resultan dari ketiga vektor di bawah ini. FAUZIYYAH Ilustrasi vektor F1, F2, dan F3 pada koordinat kartesius Langkah pertama adalah menentukan besar vektor pada proyeksi sumbu x dan sumbu y. F1 merupakan vektor dengan sudutnya diketahui berada pada referensi sumbu x. Sehingga kita dapat langsung memasukkannya ke dalam persamaan. Sementara itu vektor F1 termasuk pada kuadran 1, dimana sin dan cos bernilai positif. Baca juga Vektor Posisi, Kecepatan, dan Percepatan FAUZIYYAH Menentukan besar proyeksi vektor F1 pada sumbu x dan sumbu y F2 merupakan vektor dengan sudutnya diketahui berada pada referensi sumbu y. Sementara itu vektor F2 termasuk pada kuadran 2, dimana sin bernilai positif dan cos bernilai negatif. Untuk menentukan besar vektor F2, terdapat 2 cara yang dapat dipilih.
Vektormerupakan salah satu materi matematika peminatan (mathematics- extended/further) yang dipelajari oleh siswa kelas X jurusan MIPA Tingkat SMA.Secara singkat, vektor merupakan besaran yang memiliki nilai sekaligus arah. Kadang vektor juga disebut sebagai garis berarah (garis yang memiliki panah), di mana panjang garis mewakili nilai vektor, sedangkan panah mewakili arah vektor.
Subscribe!Klik di sini untuk berlangganan artikel melalui Telegram. Merentang ruang vektor, adalah syarat bagi himpunan bebas linear untuk menjadi basis ruang vektor. Tapi, apa sih yang disebut merentang? Sebelum menjawab pertanyaan ini, mari perhatikan daftar isi berikut. Definisi Merentang Definisi Misalkan adalah subset tak kosong dari suatu ruang vektor dan adalah himpunan yang memuat semua kombinasi linear yang mungkin dari vektor-vektor dalam . Maka disebut subruang dari yang direntang oleh . Dengan kata lain, himpunan merentang . Subruang ini dituliskan dengan notasi Berdasarkan definisi, himpunan dikatakan merentang ruang vektor , jika Dengan kata lain, setiap vektor dalam dapat dinyatakan sebagai kombinasi linear dari vektor-vektor dalam . Dua himpunan yang berbeda dapat merentang subruang yang sama. Hal ini termuat dalam teorema berikut. Teorema 1 Misalkan dan adalah subset tak kosong dari suatu ruang vektor . Maka jika dan hanya jika setiap vektor dalam dapat dinyatakan sebagai kombinasi linear dari vektor-vektor dalam , begitupun sebaliknya. Soal dan PembahasanNomor 1Misalkan adalah ruang vektor, dan himpunan merentang . Jika , maka buktikan bahwa himpunan juga merentang .PembahasanMisalkan $\textbf{q} \in V$. Karena himpunan $S$ merentang $V$, maka terdapat skalar $k_1,k_2,\ldots,k_n$ sedemikian sehingga $$\textbf{q} = k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ Persamaan ini dapat ditulis sebagai $$\textbf{q} = 0\textbf{w} + k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ Artinya, $\textbf{q}$ adalah kombinasi linear dari vektor-vektor $\textbf{w},\textbf{u}_1,\textbf{u}_2,\ldots,\textbf{u}_n$. Dengan demikian, himpunan $S'$ juga merentang $V$. 2Misalkan adalah ruang vektor dan himpunan merentang . Jika adalah kombinasi linear dari vektor-vektor lainnya, maka buktikan bahwa himpunan juga merentang .PembahasanMisalkan $\textbf{q} \in V$ dan $\textbf{u}_1$ adalah kombinasi linear dari vektor-vektor lain dalam $S$, yaitu $$\textbf{u}_1=l_2\textbf{u}_2+l_3\textbf{u}_3+\ldots+l_n\textbf{u}_n$$ untuk suatu skalar $l_2,l_3,\ldots,l_n$. Karena himpunan $S$ merentang $V$, maka terdapat skalar $k_1,k_2,\ldots,k_n$ sedemikian sehingga $$\begin{aligned} \textbf{q} &= k_1\textcolor{blue}{\textbf{u}_1}+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n \\ &= k_1\textcolor{blue}{l_2\textbf{u}_2+l_3\textbf{u}_3+\ldots+l_n\textbf{u}_n}+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n \\ &= k_1l_2+k_2\textbf{u}_2+k_1l_3+k_3\textbf{u}_3+\ldots+k_1l_n+k_n\textbf{u}_n \end{aligned}$$ Artinya, $\textbf{q}$ adalah kombinasi linear dari vektor-vektor $\textbf{u}_2,\ldots,\textbf{u}_n$. Dengan demikian, himpunan $S'$ juga merentang $V$. 3Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Buktikan bahwa adalah subruang .PembahasanHimpunan $V$ bersifat tertutup terhadap operasi penjumlahan vektor dan perkalian skalar, sehingga $\text{span}S$ adalah subset dari $V$. Selain itu, vektor nol adalah kombinasi linear dari vektor-vektor dalam $S$, sehingga $\text{span}S$ bukan himpunan kosong. Misalkan $k$ adalah skalar dan $\textbf{v},\textbf{w} \in \text{span}S$ dengan $$\begin{aligned} \textbf{v} &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n \\ \textbf{w} &= m_1\textbf{u}_1+m_2\textbf{u}_2+\ldots+m_n\textbf{u}_n \end{aligned}$$ Untuk membuktikan $\text{span}S$ subruang dari $V$, perlu ditunjukkan $\textbf{v}+k\textbf{w} \in \text{span}S$. Perhatikan bahwa $$\begin{aligned} \textbf{v}+k\textbf{w} &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n+km_1\textbf{u}_1+m_2\textbf{u}_2+\ldots+m_n\textbf{u}_n \\ &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n+km_1\textbf{u}_1+km_2\textbf{u}_2+\ldots+km_n\textbf{u}_n \\ &= l_1+km_1\textbf{u}_1+l_2+km_2\textbf{u}_2+\ldots+l_n+km_n\textbf{u}_n \end{aligned}$$ Akibatnya $\textbf{v}+k\textbf{w} \in \text{span}S$. Dengan demikian, $\text{span}S$ adalah subruang vektor dari $V$. 4Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Buktikan bahwa .PembahasanMisalkan $\textbf{u}_r \in S$. Untuk membuktikan $S \subseteq \text{span}S$, perlu ditunjukkan $\textbf{u}_r \in \text{span}S$. Perhatikan bahwa $$\textbf{u}_r = 0\textbf{u}_1+0\textbf{u}_2+\ldots+1\textbf{u}_r+\ldots+0\textbf{u}_n$$ sehingga $\textbf{u}_r \in \text{span}S$. Dengan demikian, $S \subseteq \text{span}S$. 5Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Jika adalah subruang yang memuat , maka buktikan bahwa .PembahasanMisalkan $\textbf{t} \in \text{span}S$, sehingga $$\textbf{t}=k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ untuk suatu skalar $k_1,k_2,\ldots,k_n$. Diketahui $S \subseteq W$, sehingga $\textbf{u}_1,\textbf{u}_2,\ldots,\textbf{u}_n \in W$. Karena $W$ subgrup, maka aksioma 1 dan 6 berlaku, sehingga $$k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n = \textbf{t} \in W$$ Dengan demikian, $\text{span}S \subseteq W$. 6Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a_1,a_2,a_3 \in \mathbb{R}^3$. Perhatikan bahwa $$\begin{aligned} \textbf{w} &= a_1,a_2,a_3 \\ &= a_1,0,0+0,a_2,0+0,0,a_3 \\ &= a_11,0,0+a_20,1,0+a_30,0,1 \\ &= a_1 \textbf{u}_1+a_2 \textbf{u}_2 + a_3 \textbf{u}_3 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 7Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p2,2,2 + q0,0,3 + r0,1,1 \\ &= 2p,2p,2p + 0,0,3q + 0,r,r \\ &= 2p,2p+r,2p+3q+r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} 2p&\\&&\\& \=\ &a \\ 2p&\\&&\+\&r \=\ &b \\ 2p&\+\&3q&\+\&r \=\ &c \end{alignat*}\right.$$ Dari persamaan pertama diperoleh $p=a/2$. Substitusi nilai $p$ pada persamaan kedua, untuk memperoleh nilai $r=b-a$. Terakhir, substitusi nilai $p$ dan $r$ pada persamaan ketiga, untuk memperoleh nilai $q=c-b/3$. Jadi, sistem persamaan di atas mempunyai solusi $$p=\frac{a}{2}, \ q=\frac{c-b}{3}, \ r=b-a$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 8Misalkan dengan Gunakan Teorema 1 untuk menunjukkan bahwa himpunan merentang .PembahasanMisalkan $W=\{\textbf{e}_1,\textbf{e}_2,\textbf{e}_3\}$ dengan $$\textbf{e}_1=1,0,0,\\textbf{e}_2=0,1,0,\\textbf{e}_3=0,0,1$$ Kita tahu bahwa himpunan $W$ merentang $\mathbb{R}^3$. Karena $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3 \in \mathbb{R}^3$, maka ketiganya dapat ditulis sebagai kombinasi linear dari vektor-vektor dalam $W$. Berikutnya, tinggal ditunjukkan bahwa $\textbf{e}_1,\textbf{e}_2,\textbf{e}_3$ dapat ditulis sebagai kombinasi linear dari vektor-vektor dalam $S$. Perhatikan bahwa $$\begin{aligned} \textbf{e}_3 &= \frac{1}{3} \textbf{u}_2 \\ \textbf{e}_2 &= \textbf{u}_3-\frac{1}{3} \textbf{u}_2 \\ \textbf{e}_1 &= \frac{1}{2} \textbf{u}_1-\textbf{u}_3 \end{aligned}$$ Berdasarkan Teorema 1, diperoleh $$\text{span}S=\text{span}W=\mathbb{R}^3$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$. 9Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p1,1,1 + q1,2,3 + r1,5,8 \\ &= p+q+r,p+2q+5r,p+3q+8r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} p&\+\&q&\+\&r \=\ &a \\ p&\+\&2q&\+\&5r \=\ &b \\ p&\+\&3q&\+\&8r \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}1&1&1\\1&2&5\\1&3&8\end{bmatrix}$$ Karena $\text{det}A=-1\neq0$ periksa!, maka sistem persamaan di atas konsisten untuk setiap $a,b,c \in \mathbb{R}^3$. Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 10Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p2,-1,3 + q4,1,2 + r8,-1,8 \\ &= 2p+4q+8r,-p+q-r,3p+2q+8r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} 2p&\+\&4q&\+\&8r \=\ &a \\ -p&\+\&q&\-\&r \=\ &b \\ 3p&\+\&2q&\+\&8r \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}2&4&8\\-1&1&-1\\3&2&8\end{bmatrix}$$ Karena $\text{det}A=0$ periksa!, maka dapat disimpulkan bahwa himpunan $S$ tidak merentang $\mathbb{R}^3$.Nomor 11Misalkan Tentukan syarat yang harus dipenuhi oleh sehingga berada dalam .PembahasanMisalkan $\textbf{w} = a,b,c \in \text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}$, sehingga terdapat skalar $p,q,r$ yang memenuhi $$\begin{aligned} \textbf{w} &= p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3 \\ a,b,c &= p1,2,0 + q-1,1,2 + r3,0,-4 \\ &= p-q+3r,2p+q,2q-4r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} p&\-\&q&\+\&3r \=\ &a \\ 2p&\+\&q&\\& \=\ &b \\ &\\&2q&\-\&4r \=\ &c \end{alignat*}\right.$$ Matriks yang diperbesar dari sistem persamaan ini adalah $$\begin{bmatrix}1&-1&3&a\\2&1&0&b\\0&2&-4&c\end{bmatrix}$$ dengan bentuk eselon baris $$\begin{bmatrix}1&-1&3&a\\0&1&-2&\frac{-2a+b}{3}\\0&0&0&\frac{-2a+b}{3}-\frac{c}{2}\end{bmatrix}$$ Karena $\textbf{w} \in \text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}$, maka sistem persamaan di atas harus konsisten. Dan ini terjadi, jika $$\frac{-2a+b}{3}-\frac{c}{2}=0 \quad \Longrightarrow \quad -4a+2b-3c=0$$ Jadi, syarat yang harus dipenuhi oleh $a,b,c$ adalah $-4a+2b-3c=0$.Nomor 12Misalkan dan Gunakan Teorema 1, untuk menunjukkan bahwa .PembahasanPertama, kita akan menunjukkan bahwa $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3$ dapat ditulis sebagai kombinasi linear dari $\textbf{w}_1,\textbf{w}_2$. Hal ini dapat dilakukan dengan inspeksi, karena komponen pertama dari $\textbf{w}_2$ adalah $0$. $$\begin{aligned} \textbf{u}_1 &= \textbf{w}_1+\textbf{w}_2 \\ \textbf{u}_2 &= 2\textbf{w}_1+\textbf{w}_2 \\ \textbf{u}_3 &= -\textbf{w}_1 \end{aligned}$$ Berikutnya, kita akan menunjukkan bahwa $\textbf{w}_1,\textbf{w}_2$ dapat ditulis sebagai kombinasi linear dari $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} \textbf{w}_1 &= -\textbf{u}_3 \\ \textbf{w}_2 &= \textbf{u}_1+\textbf{u}_3 \end{aligned}$$ Berdasarkan Teorema 1, dapat disimpulkan bahwa $$\text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}=\text{span}\{\textbf{w}_1,\textbf{w}_2\}$$ 13Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{q}=a+bx+cx^2 \in P_2$. Perhatikan bahwa $$\begin{aligned} \textbf{q} &= a+bx+cx^2 \\ &= a \cdot 1 + b \cdot x + c \cdot x^2 \\ &= a \textbf{p}_1+b \textbf{p}_2 + c \textbf{p}_3 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $P_2$.Nomor 14Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a+bx+cx^2 \in P_2$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3$ sedemikian sehingga $\textbf{w}=k_1\textbf{p}_1 + k_2\textbf{p}_2 + k_3\textbf{p}_3$. Perhatikan bahwa $$\begin{aligned} a+bx+cx^2 &= k_1x^2+1 + k_2x^2+x + k_3x+1 \\ &= k_1+k_3 + k_2+k_3x + k_1+k_2x^2 \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} k_1&\\&&\+\&k_3 \=\ &a \\ &\\&k_2&\+\&k_3 \=\ &b \\ k_1&\+\&k_2&\\& \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}1&0&1\\0&1&1\\1&1&0\end{bmatrix}$$ Karena $\text{det}A=-2\neq0$ periksa!, maka sistem persamaan di atas konsisten untuk setiap $a+bx+cx^2 \in P_2$. Dengan demikian, himpunan $S$ merentang $P_2$.Nomor 15Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a+bx+cx^2 \in P_2$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3,k_4$ sedemikian sehingga $\textbf{w}=k_1\textbf{p}_1 + k_2\textbf{p}_2 + k_3\textbf{p}_3+k_4\textbf{p}_4$. Perhatikan bahwa $$\begin{aligned} a+bx+cx^2 &= k_11-x+2x^2 + k_23+x + k_35-x+4x^2 + k_4-2-2x+2x^2 \\ &= k_1+3k_2+5k_3-2k_4 + -k_1+k_2-k_3-2k_4x + 2k_1+4k_3+2k_4x^2 \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{4} k_1&\+\&3k_2&\+\&5k_3&\-\&2k_4 \=\ &a \\ -k_1&\+\&k_2&\-\&k_3&\-\&2k_4 \=\ &b \\ 2k_1&\\&&\+\&4k_3&\+\&2k_4 \=\ &c \end{alignat*}\right.$$ Matriks yang diperbesar dari sistem persamaan ini adalah $$A=\begin{bmatrix} 1&3&5&-2&a\\ -1&1&-1&-2&b\\ 2&0&4&2&c \end{bmatrix}$$ dengan bentuk eselon baris $$A=\begin{bmatrix} 1&3&5&-2&a\\ 0&1&1&-1&\frac{a+b}{4}\\ 0&0&0&0&-\frac{a}{2}+\frac{3b}{2}+c \end{bmatrix}$$ Sistem persamaan ini konsisten, hanya jika $$-\frac{a}{2}+\frac{3b}{2}+c=0$$ Dengan demikian, himpunan $S$ tidak merentang $P_2$.Nomor 16Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $A \in M_{2\times 2}\mathbb{R}$, dengan $$A=\begin{bmatrix}a_1&a_2\\a_3&a_4\end{bmatrix}$$ untuk suatu $a_1,a_2,a_3,a_4 \in \mathbb{R}$. Perhatikan bahwa $$\begin{aligned} A &= \begin{bmatrix}a_1&a_2\\a_3&a_4\end{bmatrix} \\[5pt] &= \begin{bmatrix}a_1&0\\0&0\end{bmatrix}+\begin{bmatrix}0&a_2\\0&0\end{bmatrix}+\begin{bmatrix}0&0\\a_3&0\end{bmatrix}+\begin{bmatrix}0&0\\0&a_4\end{bmatrix} \\[5pt] &= a_1\begin{bmatrix}1&0\\0&0\end{bmatrix}+a_2\begin{bmatrix}0&1\\0&0\end{bmatrix}+a_3\begin{bmatrix}0&0\\1&0\end{bmatrix}+a_4\begin{bmatrix}0&0\\0&1\end{bmatrix} \\[5pt] &= a_1E_1 + a_2E_2 + a_3E_3 + a_4E_4 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $M_{2 \times 2}\mathbb{R}$.Nomor 17Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $P \in M_{2 \times 2}\mathbb{R}$, dengan $$P=\begin{bmatrix}p_1&p_2\\p_3&p_4\end{bmatrix}$$ untuk suatu $p_1,p_2,p_3,p_4 \in \mathbb{R}$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3,k_4$ sedemikian sehingga $P=k_1A+k_2B+k_3C+k_4D$. Perhatikan bahwa $$\begin{aligned} \begin{bmatrix}p_1&p_2\\p_3&p_4\end{bmatrix} &= k_1\begin{bmatrix}1&0\\0&0\end{bmatrix} + k_2\begin{bmatrix}1&1\\0&0\end{bmatrix} + k_3\begin{bmatrix}1&1\\1&0\end{bmatrix} + k_4\begin{bmatrix}1&0\\1&1\end{bmatrix} \\[5pt] &= \begin{bmatrix}k_1+k_2+k_3+k_4&k_2+k_3\\k_3+k_4&k_4\end{bmatrix} \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{4} k_1&\+\&k_2&\+\&k_3&\-\&k_4 \=\ &p_1 \\ &\\&k_2&\+\&k_3&\\& \=\ &p_2 \\ &\\&&\\&k_3&\+\&k_4 \=\ &p_3 \\ &\\&&\\&&\\&k_4 \=\ &p_4 \end{alignat*}\right.$$ Melalui substitusi balik, diperoleh solusi $$\begin{aligned} k_1 &= p_1-p_2-p_4 \\ k_2 &= p_2-p_3+p_4 \\ k_3 &= p_3-p_4 \\ k_4 &= p_4 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $M_{2 \times 2}\mathbb{R}$.
Gambar1.3 Vektor yang panjangnya nol dinamakan vektor nol dan dinyatakan dengan 0. Penjumlahan dengan vektor nol didefinisikan 0 + v = v + 0 = v Jika v sebarang vektor tak nol, maka βˆ’v (negatif v) adalah vektor yang mempunyai besaran sama seperti v tetapi arahnya berlawanan dengan v. 3. 4. 5.

BerandaTentukan vektor yang sama dari vektor-vektor berik...PertanyaanTentukan vektor yang sama dari vektor-vektor berikut! DKMahasiswa/Alumni Universitas Negeri MalangJawabandiperoleh vektor-vektor yang sama adalah serta .diperoleh vektor-vektor yang sama adalah serta .PembahasanVektor dikatakan sama apabila memiliki panjang dan arah yang sama. Jadi, vektor-vektor yang sama adalah Vektor . Vektor . Dengan demikian, diperoleh vektor-vektor yang sama adalah serta .Vektor dikatakan sama apabila memiliki panjang dan arah yang sama. Jadi, vektor-vektor yang sama adalah Vektor . Vektor . Dengan demikian, diperoleh vektor-vektor yang sama adalah serta . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!NNNazwa NurlailiMudah IKHWAN Jawaban tidak sesuaiΒ©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia

Bebaslinear, atau dalam beberapa literatur disebut bebas linier, merupakan syarat yang harus dipenuhi oleh suatu himpunan untuk menjadi basis ruang vektor.Selain bebas linear, syarat lainnya adalah membangun ruang vektor.Oleh karena itu, penting bagi kita untuk belajar mengenai himpunan bebas linear. Sebelum membahas lebih lanjut, mari perhatikan Daftar Isi berikut.
Tentukan Vektor Yang Sama Dari Vektor-vektor Berikut! – Apakah kamu sedang kesulitan menjawab pertanyaan mengenai Tentukan Vektor Yang Sama Dari Vektor-vektor Berikut! ?. Jika Iya, maka kamu berada halaman yang tepat. Kami telah mengumpulkan 5 jawaban mengenai Tentukan Vektor Yang Sama Dari Vektor-vektor Berikut!. Silakan baca lebih lanjut di bawah. 5 Jawaban Mengenai Tentukan Vektor Yang Sama Dari Vektor-vektor Berikut! Tentukan vektor yang Pertanyaan tentukan vektor yang sama dari vektor-vektor berikut​ Jawaban Jawaban a, g, h b, d, i, k c, l f, j e Penjelasan dengan langkah-langkah Semoga membantu Tentukan vektor yang Pertanyaan Tentukan vektor yang sama dari vektor-vektor di gambar berikut! Jawaban membantu ya Tentukan vektor yang Pertanyaan tentukan vektor yang sama dari vektor vektor berikut Jawaban vektor a=b=e=h, vektor d=j,vektor g, vektor c=f=i Tentukan vektor satuan Pertanyaan Tentukan vektor satuan dari vektor – vektor berikut ! Jawaban Tentukan vektor satuan dari vektor – vektor berikut! Vektor adalah besaran yang memiliki nilai dan arah. Penulisannya bisa ditulis dalam 2 huruf kapital atau 1 huruf kecil. Penulisan vektor bisa dalam bentuk Baris u = u₁, uβ‚‚ Kolom u = [tex]left[begin{array}{cc}u_{1}\u_{2}end{array}right][/tex] Basis u = u₁i + uβ‚‚j Besar atau panjang vektor u u = √u₁² + uβ‚‚Β² Vektor satuan adalah vektor yang panjangnya sama dengan satu Vektor satuan u = [tex]frac{1}{u}[/tex].u Pembahasan a u = [tex]left[begin{array}{cc}8\6end{array}right][/tex] u = √8Β² + 6Β² u = √64 + 36 u = √100 u = 10 Jadi vektor satuan u adalah = [tex]frac{1}{u}[/tex].u = [tex]frac{1}{10} . left[begin{array}{cc}8\6end{array}right] [/tex] = [tex]left[begin{array}{cc}frac{8}{10}\ frac{6}{10} end{array}right][/tex] = [tex]left[begin{array}{cc}frac{4}{5}\ frac{3}{5} end{array}right][/tex] b b = [tex]left[begin{array}{cc}-5\12end{array}right][/tex] b = √-5Β² + 12Β² b = √25 + 144 b = √169 b = 13 Jadi vektor satuan b adalah = [tex]frac{1}{b}[/tex].b = [tex]frac{1}{13} . left[begin{array}{cc}-5\12end{array}right] [/tex] = [tex]left[begin{array}{cc}-frac{5}{13}\ frac{12}{13} end{array}right][/tex] c s = [tex]left[begin{array}{ccc}3\-2\6end{array}right][/tex] s = √3Β² + -2Β² + 6Β² s = √9 + 4 + 36 s = √49 s = 7 Jadi vektor satuan s adalah = [tex]frac{1}{s}[/tex].s = [tex]frac{1}{7} . left[begin{array}{ccc}3\-2\6end{array}right] [/tex] = [tex]left[begin{array}{cc}frac{3}{7}\ -frac{2}{7} \ frac{6}{7} end{array}right][/tex] d t = [tex]left[begin{array}{ccc}12\3\4end{array}right][/tex] t = √12Β² + 3Β² + 4Β² t = √144 + 9 + 16 t = √169 t = 13 Jadi vektor satuan t adalah = [tex]frac{1}{t}[/tex].t = [tex]frac{1}{13} . left[begin{array}{ccc}12\3\4end{array}right] [/tex] = [tex]left[begin{array}{cc}frac{12}{13}\ frac{3}{13} \ frac{4}{13} end{array}right][/tex] Pelajari lebih lanjut Contoh soal lain tentang panjang vektor β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€” Detil Jawaban Kelas 10 Mapel Matematika Kategori Vektor Kode Kata Kunci Tentukan vektor satuan dari vektor – vektor berikut! Tentukan vektor yang Pertanyaan tentukan vektor yang sama dari vektor – vektor berikut! Jawaban Vektor yang sama dari gambar vektor-vektor yang disajikan adalah Vektor a dengan vektor g. Vektor f dengan vektor j. Alasannya adalah karena pasangan vektor tersebut memiliki panjang dan arah yang sama. Penjelasan dengan langkah-langkah Dua buah vektor dikatakan sama jika kedua vektor tersebut memiliki panjang yang sama serta arah vektor yang sama. Jika kedua vektor memiliki arah yang sama tetapi panjang yang berbeda maka vektor yang satu merupakan kelipatan dari vektor lainnya. a = k b dengan k = konstanta a dan b = vektor Jika k = 1, maka vektor a sama dengan vektor b. Diketahui Gambar vektor a, b, c, d, e, f, g, h, i dan j berupa garis lurus berarah. Ditanyakan Tentukan vektor yang sama dari vektor-vektor tersebut! Jawab Langkah 1 Pasangan pertama vektor yang sama adalah Vektor a dengan vektor g Alasannya Panjang vektor a sama dengan panjang vektor g. Arah vektor a sama dengan arah vektor g. Langkah 2 Pasangan kedua vektor yang sama adalah Vektor f dengan vektor j Alasannya Panjang vektor f sama dengan panjang vektor j. Arah vektor f sama dengan arah vektor j. Pelajari lebih lanjut Materi tentang proyeksi vektor u dan v Materi tentang perkalian vektor a dan b Materi tentang penjumlahan dan perkalian vektor Detil Jawaban Kelas 12 Mapel Matematika Kategori Vektor Kode TingkatkanPrestasimu SPJ3 Selain jawaban dari pertanyaan mengenai Tentukan Vektor Yang Sama Dari Vektor-vektor Berikut!, kamu juga bisa mendapatkan kunci jawaban dari soal-soal seperti tentukan vektor yang, Tentukan vektor satuan, Tentukan vektor yang, tentukan vektor yang, and tentukan vektor yang. . Semoga Bermanfaat untuk kamu yang sedang kesulitan mengerjakan Tugas / Ujian. Terima Kasih.
. 377 222 73 189 420 63 329 26

tentukan vektor yang sama dari vektor vektor berikut